推荐课例
发布时间:02-19
科目:高中数学教学视频
时长:35:38
热度:
课文: 正弦定理  
专题:
12.高中数学《正弦定理》探究教学视频,2023年中国教育报“智慧校园”全国系列活动(杭州站)创新案例展示
本12.高中数学《正弦定理》探究教学视频,2023年中国教育报“智慧校园”全国系列活动(杭州站)创新案例展示由听课站收集整理,听课站视频主要涵盖中小学优质课视频,公开课视频,示范课视频,获奖课视频,说课视频,模拟上课视频,模拟试讲视频等,通过多年的不断更新与完善,优质课视频内容丰富,是一个强大的教师优质课听课平台,如果您需要观看更多关于高中数学教学视频的教学视频请到高中数学教学视频栏目观看。如果您觉得该视频不错请别忘了将该视频进行转发分享到微信、QQ空间等,让更多的人一起学习,同时也请记住我们的网站【听课站 https://www.tingkez.com】。
12.高中数学《正弦定理》探究教学视频,2023年中国教育报“智慧校园”全国系列活动(杭州站)创新案例展示
说话人 1
开始本节课的学习之前,我想请两位同学上来玩一下这个游戏,有没有人自告奋勇的举手?没有,他是需要两个人 PK 一下的,可以一个男生一个女生都可以。好,课代表,那你们两个上来,两个男生上来。好可以的,游戏难度有三个等级,你们想要挑战哪个难度的?直接难的直接三星好吗?直接三星。对,然后一会看一下,我们看一下问题的描述,关于三角形的描述正确的是,然后中间有个分界线,看到了吗?自己点自己的好不好?正确的话你就点一下,如果准备好了,你可以点击开始了。哈哈哈,这干嘛?正确的你就点一下。点它。点它。正确的就点一下,哈哈哈,边边角可以,哈哈哈,hahaha。
14 个, 17 个,哈哈哈,好了,大家看一下啊。嗯,张朝轩全部都是答对的,没有答错的啊。好,你略胜一筹对不对?我们满分好像是 100 多分。好,请你们两个先回去做一下,略胜一筹。满分有 100 多分,可能他们刚开始还没有准备好,有没有同学想再上来再玩一下?可能你们刚刚在底下已经看了大部分的一个题目了,有没有两,要不两个女生上来好不好?我们理想你上来一个,好不好?然后还有没有哪个女生想上来?徐新泽是吗?对,徐新泽想上来玩一下。
可以的,没事的,上来吧,我们来挑战一下,如果你们觉得刚才那个太快的话,其实可以把这个难度降低一点,对不对?你们要选择几星呢?哈哈哈,两星的话它速度就会慢一点。两心好不好?两心啊。刚才他们表示速度有点塌,如果准备好了,你就可以点击开始了。一边一个,我们看一下四个同学到底谁是最高分,正确的就可以点一下,哈哈哈,叫,哈哈哈,好了,我们请李想留步,好不好?哈哈哈,他后来居上,一下子成了我们四个人当中的冠军是不是啊?你要不发表一下你的获胜感言?有没有什么来面对?大家说一下你的获胜感言,要努力,是吧啊?说得很好,我们给他一点掌声,好不好了啊?大家刚才坐在底下其实也看到了,我所有的这些问题都是围绕着三角形的边和角来展开的,对不对啊?那关于三角形的边角我们初中是怎么描述的?李珊,初中是怎么描述三角形的边角关系的,你还记得吗?
说话人 2
可能我可能不太记性,但是我大致记得就是一个由三边构成的一封闭图形,然后其中就是这三个角的,就是可能大边对大角,然后那个三角三个角的度数之和是。
180,度对度数之和是 180 度,这是三个角之间的关系,对不对?你刚才说了大边对大角,其实就是边和角的关系,对吧?那除了大边大脚,还有如果两个边相等等边等边等角,还有小边小角。对,很好,这是我们初中关于三角形边角关系的一个描述,等边等角、大边大角,还有小边小角。那如果这个小结论如我们用符号来表示的话,就是 a 等于b,是等价于角,两个角相等,对不对啊?那如果是 a 大于 b 的话,那就等价于大, a 大于大b,那如果 a 小于b,就是大 a 小于b,是不是好?那这个结论只是关于三角形边角关系的一个直观的定性描述啊。
如何刻画它们的定量关系,也就是说在一个三角形当中,我们把 a 对的边为小a, b 对的边为小b,我们这四个变量,也就是两组对边和对角之间的定量关系应该怎么描述?这就是我们本节课要学习的内容,我们不得不重新来研究一下三角形,也就是正弦定理啊。
大家知道我们在数学当中其实要研究一个新的问题是比较困难的,如果意识难以解决,我们可以尝试从特殊的情况出发,对吧?那如果把研究特殊情况的结论和非方法推广到一般情况,我们得到一般性的解答,是不是就可以解决这个问题了?那三角形如果我们根据最大角的情况可以分成哪几类?根据最大角的情况,嗯,直角、钝角还有锐角三角形,对吧?那我们是不是可以从直角三角形这个特殊三角形出发来展开研究?好了,那我这里呢给大家画了一个直角三角形ABC,那这个三角形当中它的边角关系初衷是怎么讲的哦?大家都异口同声的说出 a 方加 b 方等于 c 方,对吧?那这个就是它三边的关系,对不对?那边和角之间有什么关系?林中航边和角之间,大角。对,大边。对。那你刚才回答的这个和李三这个是不是一样的啊?那直角三角形它又比较特书,它的边和角对着斜边,就是最长的那一条边。对,这个我们也知道边和角的关系呢。嗯,小 b 等于 sign a 乘上小c。那其实你就想到了直角三角形当中我们定义的锐角三角函数,是不是的?好好好,那我们来写一下,那就是 sign a 等于,嗯, a a C ADC 对边除以它的斜边,对吧?好,那除了 3E a 之外,我们还有 cosine a 对, cosine a 等于什么?就是小 b 除以 c 还有 Tangent a。
好,碳进的 a 的话是不是 a 和 b 的关系?除了正弦于3亿 a 三硬 b 是不是还有3亿a?扩散 a 是不是还有3亿b?扩散硬 b 3亿 b 等于什么? b 除以 c 好,扩散1B。好了,这是我们请坐啊。回答得非常好,这是我们在直角三角形当中给出的边和角的关系,对不对?根据锐角三角函数,好了,那这里每一个等式当中是不是都有斜边小c?那通过小 c 这个纽带,其实我们就可以找到 a 这个边和它对角的正弦的比与 b 这个边和它对角的正弦的比相等。好,我把这个式转换一下,那小 c 是不是就等于a?再除以 sin 大a,那第二个式子里面小 c 就等于b,再除以括 sin 大a,对吧?第三个式子小 c 就等于b,再除以 sin b 这里就可以得到。
小 c 就等于a,再除以扩散隐蔽是不是好?通过小 c 这张斜边,我们可以找到在直角三角形当中有这样的一个连等式成立,那后面这个几项比值是相等的,就可以说明我们每两个直角边和它对角之间的关系是不是好?那我就想问了,这个特殊三角形当中成立的这个等式,在一般的三角形当中也成立吗啊?随着信息技术的发展,我们完全可以利用几何画板来检验一下,这比你手工计算是不是要方便多了?好,所以我们现在用几何画板给大家来计算一下,在这个三角形当中,你通过这个显示出来的这四个比值,你就会发现刚才那个连等式其实是不成立的,对不对啊?后面这两项就是 b 除以 cos a 和 a 除以 cos b 是不相等,这里显示的就是 a 除以 sin a 是等于 b 除以 3 a b,对吧啊?好了,那根据三角形那个对称,我们三角形是不是有三个角、三个边?如果根据这种对称的规律,我是不是还要加一个小 c 除以31C?是不是啊?我们先看一下在直三角形当中成立吗?直接很角形当中,我们刚才是不是得到的等式是小 c 等于 a 除以 sin a 等于 b 除以 sin b,对吧?我们根据这个比值的规律,是不是想在底下加一个 sin c?能不能加上去?可不可以?不能不能?可不可以?为什么可以啊? 31C 是多少?对, 31C 就是三一九数,是不是一,所以我在这个分母下面配一个一完全是没有问题,对吧?那一的话我就把它又写成上一声音,是不是就好啦?那说明在直角三角形这个等式是不是成立的?那我们现在画的是一般的三角形,是不是啊?我们不妨来计算一下在一般的三角形当中成不成立,我这边已经给大家算了每个角的正弦和余弦,然后我们直接来计算一下 c 除以 31 c,直接用这个小 c 除以 sin c,我们来看看是不是和 a 除以 sin a 相等,诶?既然是相等的,对不对?好,那我们来变换一下这个三角形的形状,这个三角形我可以拖动其中一个点,大家来看一下,在我任意变换这个三角形的形状的过程当中,比值是不会发生变化,但它仍然是相等的,是不是仍然是相等的?好了,那是我们从特殊的三角形出发,结合这个信息技术,我们已经找到了这三项,是不是相等,对吧?好了,这有了这样的一个等式,对不对?好,那这个等式呢?只能说有无数个三角形是不是都满足?是不是?无数个三角形都满足,对吧?那无数是代表任意吗?无数个三角形都满足这个等式。